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ABSTRACT

This paper focuses on developing a security mechanism geared
towards appified smart-home platforms. Such platforms often ex-
pose programming interfaces for developing automation apps that
mechanize different tasks among smart sensors and actuators (e.g.,
automatically turning on the AC when the room temperature is
above 80°F). Due to the lack of effective access control mechanisms,
these automation apps can not only have unrestricted access to the
user’s sensitive information (e.g., the user is not at home) but also
violate user expectations by performing undesired actions. As users
often obtain these apps from unvetted sources, a malicious app can
wreak havoc on a smart-home system by either violating the user’s
security and privacy, or creating safety hazards (e.g., turning on the
oven when no one is at home). To mitigate such threats, we propose
Expat which ensures that user expectations are never violated by
the installed automation apps at runtime. To achieve this goal, Ex-
pat provides a platform-agnostic, formal specification language Uei
for capturing user expectations of the installed automation apps’
behavior. For effective authoring of these expectations (as policies)
in Uei, Expat also allows a user to check the desired properties (e.g.,
consistency, entailment) of them; which due to their formal seman-
tics can be easily discharged by an SMT solver. Expat then enforces
Uei policies in situ with an inline reference monitor which can be
realized using the same app programming interface exposed by
the underlying platform. We instantiate Expat for one of the repre-
sentative platforms, OpenHAB, and demonstrate it can effectively
mitigate a wide array of threats by enforcing user expectations
while incurring only modest performance overhead.
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1 INTRODUCTION

In recent years, the Internet-of-Things (IoT) has undergone drastic
innovations, from merely a network of sensors and actuators to
a complex ecosystem consisting of a wide range of smart devices
(e.g., lights, cameras) additionally equipped with automation ap-
plications (also known as apps/rules),1 and cloud-based backend
services. Smart-home platforms (e.g., SmartThings [34], OpenHAB
[29], Apple HomeKit [20]) are nothing but instances of such com-
plex appified IoT ecosystems. While such platforms use cloud-based
backend services to enable remote monitoring and control, they
often expose programming interfaces for developing flexible and
customized automation apps as deemed desirable by the users.
However, these platforms lack effective access control mechanisms,
and as a result, automation apps can exercise unrestricted access
to user’s sensitive information (e.g., the user is not at home) and
misuse smart devices (e.g., smartlock) [35]. Therefore, automation
apps, often obtained from unvetted sources (e.g., community-driven
and/or third-party marketplaces), are lucrative targets for an ad-
versary. Installing malicious apps can not only compromise the
security and privacy but also sabotage the safety of a smart-home.
For instance, a malicious app controlling the smartlock at the front
door can result in break-ins, theft, or even physical injury.

Automation apps predominantly follow the trigger-action para-
digm, where an app reacts to a trigger (e.g., when the user leaves
home) by commanding an action (e.g., lock the front door). Some-
times an app can send multiple actions to the same device and/or
different devices. While a trigger can activate multiple apps simulta-
neously, an action can also trigger other apps directly or indirectly.
Since a typical smart-home is equipped with many such apps, the
design principle of this paradigm can potentially lead to inconceiv-
able consequences due to subtle interplay among apps. For instance,
two apps sending conflicting actions to a smart device, or two or

1The terms app and rule are interchangeably used in this paper.
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more apps negating each other’s actions. An adversary can take
advantage of this loophole. To perform an undesired action (e.g.,
unlock the front door when the user is not at home), an adversary
can directly embed a sneaky command into its app or develop an
app to exploit such subtle interplay. Apart from malicious apps,
such misbehavior can also manifest due to programming mistakes
in benign apps. Existing smart-home platforms provide no built-in
defense mechanism against these threats. Therefore, this paper fo-
cuses on developing a security mechanism that mediates the behavior
of such automation apps through the enforcement of user expectations.
Existing efforts. The majority of the existing efforts [7, 10, 13]
focus on developing static analysis-based approaches that try to
identify violation of user expectations prior to app installation. Al-
though such pre-deployment analysis approaches do not incur any
overhead at runtime, they all suffer from the following two limita-
tions: (1) These approaches are inherently prone to imprecision due
to the underlying static (over- or under-approximation) analysis;
(2) When a violation is observed during analysis, these approaches
do not prescribe any solution to the inexperienced user to mitigate
the issue, rendering the combination of apps completely unusable.
To the best of our knowledge, the only system that aims to provide
runtime protection is IoTGuard [8]. IoTGuard, however, outsources
all the relevant internal information of the system to an off-site for
conducting runtime checking, raising a major privacy concern.
Our approach. In this paper, we propose Expatwhich ensures that
user expectations are never violated by the installed automation
apps at runtime. Expat provides a specification language called Uei
in which the user can express one or more policies, each consisting
of the invariants that they desire apps to comply with at runtime.
An example of the expected invariant could be: “I expect the front
door gets unlocked only if the vacation mode is turned off ”. Any
automation app that contemplates on opening the front door of
the house will be ultimately blocked by Expat at runtime when
the vacation mode is turned on. Expat hinges on runtime analysis
because of its precision and its capability of concentrating on a
specific execution of an app, which is essential in this context. In
addition, Expat adopts this policy-driven approach to decouple
user-defined expectations from the automation apps.

The Uei language used in Expat is designed in a general and
extensible fashion so that they can be adopted for a wide-variety of
platforms. To achieve generality and extensibility, we leave several
aspects of the language abstract and open which we expect will
be appropriately instantiated in the context of a target platform.
Currently, the native Uei policy vocabularies (e.g., current time,
states of smart devices) are chosen after investigating the concepts
of existing appified smart-home platforms [29, 34].

TheUei policy semantics, on the other hand, are devised in a way
so that they can be directly translated to quantifier-free first order
logic formulae with appropriate theories (e.g., linear real arithmetic,
strings). This enables us to support different policy analysis tasks
(e.g., consistency) by leveraging an SMT solver [36]. To analyze if
the user-defined UEI policies accurately capture user expectations,
we have designed a meta-level policy analysis language, called Pal,
in which one can express more general policy analysis tasks as
logical formulae for policies expressed in Uei. Expat provides a
compiler that automatically compiles down the appropriate Uei

policies and its analysis task expressed in Pal to SMT-LIB language
[5] which can then be discharged by an SMT solver.

Although Uei policies are platform-agnostic, their enforcement
mechanisms are platform-specific. To demonstrate the feasibility
and generality of Expat, we instantiate its enforcement engine for
the OpenHAB platform – a representative open-source smart-home
platform – by developing an in situ, inline reference monitor. For
enforcing Uei policies, we use the app execution engine of the plat-
form. It may appear that one can utilize the programming interface
to implement the policy checking and enforcement mechanism as a
separate standalone automation app. However, this straightforward
design is not effective because (i) apps execute in isolation, that is,
one app cannot access information/functionality of the other app;
(ii) each app requires to access the policy checking functionality;
and (iii) concurrent app executions can result in inconsistencies
during policy checking.

Instead, in our design for OpenHAB, we have developed the
policy checker as a utility script which can be accessed by all apps.
This script, however, does not directly solve the concurrency issues.
Therefore, we additionally employ built-in synchronization primi-
tives supported by the domain-specific language (DSL) designed
for OpenHAB apps. Once the policy checking script is synthesized
automatically from a givenUei policy, we then make apps amenable
to policy checking by instrumenting them. We have developed an
automated app-instrumentation approach that guards each (sensi-
tive) action performed by an app with a call to the policy checker.
The action contemplated by the app is allowed only if the policy
checker script suggests compliance with the given Uei policy.
Empirical evaluation.We evaluated Expat using our own testbed
akin to a smart-home equipped with 18 different smart IoT devices.
We installed 15 automation apps/rules and 8 user-defined polices.
We created 8 scenarios capturing different types of undesirable
situations that could occur due to subtle interplay between apps
and malicious apps. Our experiments demonstrated how Expat was
able to block undesirable actions violating the user’s expectations
while incurring a very low overhead (i.e., ∼63 ms).
Contributions. To summarize, the paper makes the following tech-
nical contributions:

(1) In-situ deployment: For policy enforcement, Expat does
not require access to platform’s backend. It only leverages
platform’s capability of executing an app and its program-
ming interface. Everything including Policy Decision Point
(PDP) and Policy Enforcement Point (PEP) remain inside the
platform. Control or data never leave the platform, enabling
Expat to avoid any privacy or performance concerns. Expat
is agnostic to whether the platform operates in a local server
(e.g. OpenHAB) or a remote-cloud (e.g. SmartThings). As
long as the platform provides a programming environment
that can run apps, Expat is general enough to be deployable.

(2) Policy language: We present a platform-agnostic, general
specification language Uei with its precise semantics, which
can precisely and in a fine-grained fashion capture the user
expectations from the behavior of a set of installed automa-
tion apps. Uei can also be easily adopted for expressing fine-
grained, contextual access control policies for smart-home
platforms in which support for such policies are inadequate.
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(3) Policy analysis: For effective Uei policy authoring, we de-
signed a language Pal in which users can express policy
analysis tasks to be carried out on Uei policies. These tasks
can then be discharged with the help of an SMT solver.

(4) Instantiation of Expat: We demonstrate the generality
and feasibility of Expat by instantiating it for OpenHAB. We
also demonstrate Expat’s effectiveness through several case
studies on OpenHAB. In our evaluation, we observed that
Expat can effectively thwart malicious behavior from apps
while incurring a small latency overhead.

2 PRELIMINARIES

As IoT devices establish more embedded connectivities and become
more prevalent, vendors are striving to make them easier to use
and compatible with different home automation systems. These au-
tomation systems range from home assistants (e.g., Amazon Alexa
[2], Google Home [17], Apple HomePod [4]) mainly used to voice-
control the smart devices to appified smart-home platforms (e.g.,
Samsung SmartThings [34], OpenHAB [29], Apple HomeKit [20])
facilitating the automation and interoperability between them.

The appified smart-home platforms are specifically devised to
bring a seamless automation precesses among the smart devices
at home using which a user is envisioned to have a minimum
intervention in the operation of the system. They are designed to be
as simple as possible in order to be adopted by a wide range of home-
users, while being powerful enough to handle complex automation
scenarios expressed by superusers/app developers. These platforms
might have different architectures, residing on a propitiatory cloud
or living on a local server on the user side; however, in the end,
they all provide a programming interface for users to develop the
automation tasks. For instance, Samsung SmartThings provides a
cloud based architecture in which smart devices can be managed
directly by SmartApps (i.e. Groovy-based automation apps) on the
cloud or through a connected Hub [34]. User can also participate in
controlling the devices directly though a companion SmartThings
mobile app. OpenHAB on the other hand, provides both cloud-
based and local-server architecture in which users can write some
automation rules in a domain-specific language to establish some
interactions among the smart devices.

The programming interface provided by such platforms gen-
erally follows the trigger-action paradigm. In the trigger-action
programming, the user requires to specify (i) a trigger, the condi-
tion or event under which the system should do something, and (ii)
action(s), which is a command sent to another device or a particular
function accomplishing a task.

3 OVERVIEW OF EXPAT

We start this section by describing our threat model. We then
present the problem Expat aims at mitigating. Finally, we present
the high-level functionality of Expat and how it can be leveraged by
a user to protect her appified smart-home system against relevant
threats from malicious or misbehaving automation apps.

3.1 Threat Model

In our threat model, we assume automation apps for smart-home
platforms, obtained possibly from unvetted sources, can be mali-
cious. In this threat model, a single malicious app can carry out
some undesired behavior; possibly under very specific conditions
(e.g., logic bombs). In a more complex scenario, the adversary can
hide its true malicious intent in a series of apps which may co-
ordinate among themselves to exhibit an undesired behavior. We
want to emphasize that our threat model also allows an undesirable
behavior occurring benignly due to design or implementation flaws
in apps. Finally, we consider adversaries’ ability to compromise the
smart-home platform itself, due to underlying platform’s network,
system, or software vulnerabilities, to be out of scope of this paper.

3.2 Problem Definition

Expat aims at preventing installed automation apps in a smart-
home platform to carry out some (malicious) actions that violate
the user’s intended expectation.

An unintended action could be triggered purely due to the user’s
lack of understanding of some apps’ behavior, or because of the
app developers’ malicious intent. A possible way a malicious app
can sneak in a user smart-home is when the mischievous developer
advertises an app with a lucrative mechanization functionality
which also sneakily performs some other malicious action(s). For
instance, let us consider an app that advertises the functionality of
switching off all the lights in the house whenever the user turns on
the night mode. The malicious developer, however, also sneaked
in other unadvertised actions including one that unlocks the front
door of the house at that time. As many platforms allow apps to
access web services, it is plausible that the app could communicate
back to the developer with an approximate geo-location of the
house before opening the door.

Another possible way an unintended action could arise when
the user installs apps that interact with each other in inconceivable
ways leaving the system in a hazardous state. Suppose there are
two automation apps app1 and app2 providing some home safety
features. app1 aims at protecting the user from fire and thus turns
on the sprinkler whenever the house temperature is over 135°F and
it senses smoke. app2, on the other hand, protects the user from
damages due to water leak so whenever it detects a water leak with
one of its sensors then it turns off the main water valve. In case of a
fire, app1 will switch on the sprinklers. After the sprinklers switch
on, app2 can get triggered—due to sensing of water—closing the
main water valve and cutting off water from the sprinklers. As a
result, the house can get damaged, possibly, jeopardizing the life of
pets. In general, such unconceivable actions triggered by apps can
result in unauthorized access, physical harms, financial loss, or any
other undesirable situations. Expat aims at mitigating such threats
induced by the installed (malicious) automation apps.

3.3 ExpatWorkflow

In this section, we briefly discuss the high-level architecture of
Expat (EXpectation-based Policy Analysis and enforcemenT) and
its intended usage. Figure 1 depicts a typical workflow of Expat.

According to the figure, a user of the appified smart-home plat-
form browses through the app store or developer community forum

Session: IoT and Social SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

63



Policy Language

Policy
Deployment

Policy Analysis

SMT Solver

Appified Smart-home Platform

Automation Unit (App/Rule)

Query Result
2

App Store/
Development
Community

1

User

Install

Browse

Policy

3

Instrument
5 4

Encode

Encode

6

Expectations

Figure 1: Expat workflow

and select some apps to download and finally installs them on the
platform (step ❶). Given that those apps usually are from unvetted
sources, malicious motives are likely to be encoded in the apps
which could be baffling for the regular users to pinpoint. Hence,
the user specifies their expectations of the smart-home system in
the presence of those apps using a high-level policy language Uei
(step ❷). Having contemplated that the user policies have been
fed to the system, Expat can analyze the provided policies (e.g.,
for consistency check) to make sure they are sound and well es-
tablished. Policy analysis is performed by encoding policies as an
SMT problem (step ❸) and then consulting with an SMT-solver
(step ❹). After verifying that policies are aligned with the user
expectations and there is no conflict in it, Expat deploys the poli-
cies on a target smart-home platform by instrumenting those apps
(step ❺) such that the policies can be automatically enforced in
situ before any action is executed (step ❻), as we discuss them in
Section 4. Hence, given the well-defined policies, Expat ensures no
action is taken that violates user’s expectations by enforcing them
at runtime. Installation of new apps would restart the workflow.

4 EXPECTATION-BASED POLICY LANGUAGE,

ANALYSIS, AND DEPLOYMENT

We start off this section with an abstract model of an appified smart-
home platform. We then present the syntax and formal semantics
of Expat’s expectation-based policy language, Uei (short for, user-
expectation invariants), and then discuss the aspects of Expat’s
policy analysis and deployment in a smart-home platform.

4.1 Abstract Smart-home Model with Expat
We present an abstract model of an appified smart-home platform
and use it to explain the enforcement of Uei policies at a high-
level. In our context, a smart-homeH can be viewed as an labeled
transition system (LTS) of the following form: ⟨S,A,V,R⟩.

TheS component ofH represents a non-empty, possibly infinite,
set of states. Note that, in the definition ofH , we do not explicitly
include a designated set of initial states intentionally to allow the
system to start at any state. A inH , on the other hand, represents
the non-empty set of possible actions (e.g., turning on the light)
recognized byH . For generality, we intentionally leave the struc-
ture of an action to be abstract. One can envision the action to be a
mapping of variables to values (of appropriate type). For instance,
a ∈ A can be a tuple of the following form: ⟨requesting_app 7→
app1, action_device 7→ smartLock1, action_command 7→ unlock⟩.

V represents an arbitrary but finite set of typed variables.V can
be decomposed into two mutually exclusive set of variablesVe and
Vs, that is,V = Ve ∪Vs andVe ∩Vs = ∅. The variables inVe and
Vs denote environment-controlled variables (e.g., temperature) and
state variables (e.g., the lock status of the front door), respectively.
Each state s ∈ S can be viewed as a labeling function that maps
each variablev ∈ V to a value in the domain with appropriate type.
For instance, given a variable v ∈ V representing the lock status of
a front door, the state s will map v to the one of the elements in the
domain {locked, unlocked}, that is, s (v ) ∈ {locked, unlocked}.

The transition relation R ⊆ S ×A × S dictates how the system
H changes states after observing an action. More precisely, for any
s1, s2 ∈ S and a ∈ A, if ⟨s1,a, s2⟩ ∈ R (or, in short s1

a
→ s2), then

it signifies that after observing action a at state s1 the system H
moves to a state s2. For instance, in a state in which the front door is
locked when the system observes an action to unlock the front door
then it will move to a state where the front door is now unlocked.
We consider R to be left-total andH to be a deterministic LTS.

For a given smart-homeH , Expat’s objective is to regulateH ’s
behavior so that every state, H transitions to because of an app
action, must satisfy the user expectations. Suppose user expecta-
tions are represented as quantifier-free first order logic (QF-FOL)
formulae. The actual syntax and semantics of Expat’s policy lan-
guage Uei is presented just below. Given a user expectation Ψ as a
QF-FOL formula, Expat modifies the original transition relation R
of a givenH— provided that the initial state ofH satisfies Ψ—to a
new transition relation RΨ which is defined in the following way:
RΨ = {⟨s1,a, s2⟩ | ⟨s1,a, s2⟩ ∈ R and s2 |= Ψ}. Informally, for a
given user expectation Ψ, this new transition relation RΨ essen-
tially allows those transitions s1

a
→ s2 in R that take the system to a

state s2 that satisfies the user expectations Ψ (i.e., s2 |= Ψ). For any
state s and user expectationsΨ, we say s |= Ψ iff the ground formula,
obtained by replacing each variable v ∈ Ψ with the concrete value
s (v ), evaluates to true. For instance, given s = {x 7→ 10,y 7→ 1} and
Ψ = x ≥ y, we can write s |= Ψ as s (x ) ≥ s (y) (or, simply 10 ≥ 1).
The same state s = {x 7→ 10,y 7→ 1}, however, does not satisfy
Ψ1 = x ≥ y + 100; written s ̸ |= Ψ1.

4.2 Syntax of Uei
We now describe the concrete syntax of Uei (User Expectation
Invariant) in which users can specify the invariants on a smart-
home platform that they intend Expat to maintain. The syntax of
Uei is shown as a BNF grammar in Figure 2. Uei was designed with
generality in mind and thus some aspects of it are intentionally left
as abstract (e.g., predicates). We use “. . .” inside the production rules
of Figure 2 to denote such abstract but extensible portions. The built-
in constructs of Uei are designed after consulting different smart-
home platforms [29, 34] and relevant literature [1, 7, 10, 13, 23, 31].

An Uei policy consists of one or more policy statements. Uei does
not explicitly impose any ordering among the policy statements.
Each policy statement is labeled with an identifier and comprises
of an unordered sequence of invariants. The policy statement con-
struct is purely syntactic in Uei, introduced particularly for group-
ing invariants based on some criteria (e.g., regulating behavior of
similar devices). The policy identifiers particularly comes in handy
for referring to a group of invariants in the policy analysis tasks.

Session: IoT and Social SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

64



⟨Policy_Language⟩ ::= ⟨Policy_Statement⟩+

⟨Policy_Statement⟩ ::= ‘Policy’ ⟨String⟩ ‘:’ ⟨Invariant⟩+
⟨Invariant⟩ ::= ‘Invariant’ ⟨String⟩ ‘:’ ⟨Invariant_Body⟩
⟨Invariant_Body⟩ ::= ⟨Situation_Block⟩⟨Desire_Block⟩⟨Expectation_Block⟩
⟨Situation_Block⟩ ::= ‘Situation’ ‘:’ ⟨Situation_Condition⟩
⟨Situation_Condition⟩ ::= ‘any’ | ⟨Condition⟩
⟨Desire_Block⟩ ::= ‘Desire’ ‘:’ ⟨Desire_Value⟩
⟨Desire_Value⟩ ::= ‘Expect’ | ‘Not’ ‘Expect’
⟨Expectation_Block⟩ ::= ‘Expectation’ ‘:’ ⟨Condition⟩
⟨Condition⟩ ::= ‘(’⟨Condition⟩‘)’| ⟨Key_Name⟩ ⟨Operator⟩ ⟨Value⟩

| ‘not’ ⟨Condition⟩
| ⟨Condition⟩ ⟨Boolean_Operator⟩ ⟨Condition⟩ | ...

⟨Boolean_Operator⟩ ::= ‘and’ | ‘or’
⟨Key_Name⟩ ::= ⟨Trigger_Source_Related_Key⟩

| ⟨Triggered_Event_Key⟩ | ⟨Device_Related_Key⟩
| ⟨Action_Related_Key⟩ | ⟨Date_Time_Related_Key⟩

⟨Trigger_Source_Related_Key⟩ ::= ‘rule_name’ | ...
⟨Triggered_Event_Key⟩ ::= ‘triggered_event_device’

| ‘triggered_event’ | ‘trigger_type’ | ...
⟨Device_Related_Key⟩ ::= ‘state’ ‘(’ ⟨String⟩ ‘)’ | ...
⟨Action_Related_Key⟩ ::= ‘action_device’ | ‘action_command’ | ...
⟨Date_Time_Related_Key⟩ ::= ‘current_time’ | ‘current_date’ | ...
⟨Operator⟩ ::= ‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ | ...
⟨Value⟩ ::= ⟨String⟩ | ⟨Number⟩ | ⟨Time⟩ | ⟨Date⟩ | ⟨Boolean⟩ | ...

Figure 2: Concrete syntax of Uei as a BNF

Policy P1:

Invariant I1:

Situation: any

Desire: Not Expect

Expectation: state(FrontDoorLock) = OFF and

(current_time >= 22:00:00 and current_time <= 6:00:00)

Figure 3: Policy example 1

An invariant in Uei, labeled by an identifier, captures the user
expectations on the system state S at a particular situation. Con-
ceptually, each invariant in Uei can be viewed to be of the following
form: “when situation holds then system property must hold” in
which situation refers to the condition under which the invariant is
applicable, whereas system property expresses the condition the
system state S must satisfy in that case. For instance, the user can
define an invariant expressing “in any situation, I do not expect the
front door to be unlocked between 10 pm and 6 am” (see Figure 3).

A user can define such an invariant with three internal blocks:
situation, desire, and expectation. The situation block, starting with
the label “Situation:”, contains the condition under which the sys-
tem invariant specified in the expectation block must be respected
with accordance to the desire block. When the user wants to express
any situation in an invariant, they can use the built-in “any” key-
word. In the desire block, identified with the label “Desire:”, the
user specifies whether they expect the condition in the following
expectation block to hold or not by using Expect or Not Expect
keywords, respectively (see Figures 3 and 4). Finally, in the expecta-
tion block, the user specifies the condition that must be respected
based on whether expect or not expect is used.

Conditions are boolean expressions with the logical operators
(i.e., and, or, not) connecting atomic conditional constructs. Atomic
conditional constructs are an extensible set of predicates. Native
Uei predicates are expressed with the infix notation and have
the following form: Key Operator Value (e.g., current_time

Policy P2:

Invariant I2:

Situation: state(OutsideTemperatureSensor) < 50

Desire: Expect

Expectation: state(LivingRoomWindowLock) = ON

Figure 4: Policy example 2

> 10:00:00). Key is a either a system or an environmental vari-
able, that is, Key ∈ V . Operator, on the other hand, represents the
built-in relational operators (e.g., ,, ≥) while Value represents a
constant whose types can be one of the following: String; Number;
Time; Date; Boolean. Note that, types are also extensible in Uei.

The built-in keys (or, variables) Key∈ V inUei can be categorized
into the following classes. For our current discussion, supposed
that an event ev was triggered (e.g., door bell rang) which caused
the systemH to execute an automation rule/app r which in turn
contemplated to take an action a (e.g., switch on the porch light).

(1) Trigger source-related key: This extensible set of keys
is regarding different aspects of r which triggered the action a.
Examples of such keys include rule_name (for, OpenHAB), app_-
name (for, SmartThings), or app_id.

(2) Triggered event-related key: This extensible set of keys is
regarding properties of ev . The triggered_event_device (e.g.,
door bell) and triggered_event (e.g., ringing of door bell) are
two examples of such keys.

(3) Device-related key: This set of keys allows the user to re-
fer to the current state (e.g., ON or OFF, 36.5°F) and types (e.g.,
Switch, Contact Sensor) of devices inH . We use the syntactic sugar
state(d) for referring to the state of device d .

(4) Action-related key: This extensible set of keys is regarding
the action a. For instance, action_device (e.g., porch light) and
action_command (e.g., turn on) are two action-related keys.

(5) Date/Time-related key: Finally, this set of built-in keysv ∈
Ve allows users to express conditions regarding the current time
and date of the system. Using the overloaded relational operators
(e.g., <, !=), date/time-related keys can be compared against the
user provided literals (e.g., current_date >= 2019-01-14).
Well-formed Uei policies. As Uei is a typed language, we ex-
pect a given Uei policy to respect the usual typing rules. For in-
stance, one cannot write state(FrontDoorLock)=36.5 because
state(FrontDoorLock) is of enum type with the domain {ON,
OFF} whereas the latter (i.e., 36.5) has the type real.

Also, we only allow action-related keys to appear in the situation
block, not in the expectation block. Allowing action-related keys
in the expectation block would allow the Uei policies to represent
obligatory actions [22] which cannot be enforced right away as
it may contradict with other policies. To explain this subtlety, let
us take the policy in Figure 4 which states “in the situation that
outside temperature is below 50°F, I expect the living room window to
be locked”. It may seem that situation/expectation concept is iden-
tical to the trigger/action paradigm used for writing automation
apps. In the trigger/action paradigm, when a condition is satisfied
(or, an event occurs), the specified action takes place right after.
However, setting Desire to Expect, w.l.o.g. in the situation/expec-
tation case, whenever the condition in the situation block holds, the
expectation’s condition must already be satisfied. Given that, the
invariant I2, in Figure 4, states that when outside temperature is
below 50°F, the window must be already closed (and, as a result of
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this invariant the window must remain closed). Assuming that the
system started in a good state (i.e., window locked), this invariant
will be maintained throughout the execution.

4.3 Formal Semantics of Uei
In this section, we present the formal semantics of Uei. Uei is
intentionally designed to be declarative, that is, there is no ordering
constraints on the invariants (or, policy statements) in a policy.
Also, invariants (or, policy statements) of a policy are combined
with a “deny overrides allow” approach, that is, an action is allowed
only when all the invariants (or, policy statements) are satisfied.
We want to, however, note that Uei is expressive enough to both
encode priorities among the rules and support other combination
approaches (e.g., first allow) through meta-variable introduction.

We provide the semantics of Uei policies by showing how to
translate a Uei policy to a quantifier free first order logic (QF-FOL)
formula with appropriate theories (e.g., linear integer arithmetic,
theory of finite strings, real arithmetic). Theories in QF-FOL pro-
vide interpretation to the different predicate symbols used in a
formula (e.g., ≥,,). As aQF-FOL formula has formal semantics, the
translation to QF-FOL allows Uei to also have a formal semantics.
Such an approach of defining semantics has the particular benefit
of enabling the use of SMT solvers to carry out different policy anal-
ysis tasks, as shown in the next section. Additionally, any extension
of Uei which introduces predicates that SMT solvers can reason
about will enjoy the same benefit regarding policy analysis. In what
follows, we use ⟦Y ⟧X to denote a function that takes as input anUei
policy construct Y (e.g., policy statement, invariant) with its type
X ∈ {P,PS, I ,C} where P,PS, I ,C correspond to the type of Uei
policy, policy statement, invariant, condition, respectively. ⟦Y ⟧X
outputs a corresponding QF-FOL formula that is equivalent to Y .
We define ⟦Y ⟧X inductively as follows.

Given an Uei policy P = [P1, P2, . . . , Pn] where each Pi (1 ≤
i ≤ n) represents a policy statement, P is interpreted as a con-

junctive QF-FOL logic formula of the form
n∧
i=1
⟦Pi ⟧

PS, written

⟦P⟧P =
n∧
i=1
⟦Pi ⟧

PS. Recall that, each policy statement Pi has the

following form [I1, I2, . . . , Im] where each Ij (1 ≤ j ≤ m) repre-
sents an invariant. Each policy statement is also interpreted as

a conjunctive formula of the following form: ⟦Pi ⟧PS =
m∧
j=1
⟦Ij ⟧

I .

The definition of ⟦Ij ⟧I thus will complete the presentation of Uei
semantics.

Recall that, each invariant Ij has the form ⟨S,D,E⟩ where S
corresponds to the situation condition, D refers to the desire block,
and E signifies the expectation condition. Depending on D, ⟦Ij ⟧I is
defined in one of the following mutually exclusive ways in which
⇒ signifies logical implication whereas ¬ refers to logical negation.

(1) ⟦Ij ⟧I = ⟦S⟧C ⇒ ⟦E⟧C (when D contains Expect).
(2) ⟦Ij ⟧I = ⟦S⟧C ⇒ ¬⟦E⟧C (when D contains Not Expect).
The definition of ⟦S⟧C and ⟦E⟧C are similar with one exception,

that is, ⟦any⟧C = ⊤ where ⊤ signifies logical true. We show the
case when the conditional expression inside S or E has the following
form: <Key_Name> <Operator> <Value>. In this case, ⟦S⟧C =

x ⊗ c where x is the logical variable corresponding to the key, ⊗
denotes the predicate symbol specified by <Operator> (e.g., ≤), and
c indicates the typed constant value that corresponds to <Value>
(e.g., 36.5). The rest of the cases can be derived inductively following
the Uei syntax directly (e.g., “and” becomes ∧, “not” becomes ¬).

Example. Consider an Uei policy Pex with two policy state-
ments P1 and P2 (see Figures 3 and 4). We can then write ⟦Pex⟧P =
(⊤ ⇒ ¬(FrontDoorLock_state = OFF ∧
current_time ≥ 22:00:00 ∧ current_time ≤ 6:00:00)) ∧
(OutsideTemperatureSensor_state < 50
⇒ LivingRoomWindowLock_state = ON)

4.4 Policy analysis

As the guarantees Expat’s enforcement can provide are as strong
as the Uei policy it is enforcing, for effective policy authoring,
Expat provides support for policy analysis. The overarching goal
of Expat’s policy analyzer is to allow users to check whether a Uei
policy captures the requirements the user intended.

Pal. For fine-grained policy analysis tasks, Expat provides a
language called Pal (short for, Policy Analysis Language). The
concrete syntax of Pal is presented in Figure 5. A Pal script has
one or more analysis commands. Each analysis command describes
the analysis type (e.g., consistency, entailment, equivalence) and up
to two arguments of policy formula type. A policy formula could be
a policy identifier, an invariant identifier, or the logical combinations
of them. An example Pal script is shown in Figure 6.

For performing the analysis, a Pal specification is first converted
into a QF-FOL satisfiability problem using Expat’s Pal compiler.
The compiler inductively constructs a QF-FOL formula while heav-
ily using the semantic function ⟦Y ⟧X (cf. § 4.3). An SMT-solver
is then consulted to check for satisfiability/validity, depending on
the analysis instructions. The policy analysis along with some ad-
ditional feedback (i.e., consistent model or counter-example) are
presented to the user.

We now present the individual analyses supported by Expat.

4.4.1 Consistency. The consistency analysis takes zero or one argu-
ment. In case, it is not provided an argument it considers the whole
policy. However, when it is provided with a policy formula as an ar-
gument it focuses its analysis on that portion of the policy. It checks
to see whether there is an action that will be allowed by the policy.
Suppose the argument to consistency analysis is the policy formula
f which after Pal compiler processes yield the QF-FOL formula
Ψ. The consistency analysis tries to find concrete s1, s2 ∈ S, and
a ∈ A such that s1

a
−→ s2 and s2 |= Ψ. This can be carried out easily

by consulting an SMT solver to check the satisfiability of Ψ. In case,
SMT determines Ψ to be unsatisfiable, we return the UNSAT-core
(i.e., a smaller sub-formula of Ψ which is unsatisfiable) to the user
which can help her to diagnose the problem in the policy.

AsUei policy invariants are of the form α → β , there is a possibil-
ity each invariant is vacuously true (i.e., α is false). More precisely,
the policy accepts all actions as all the situation conditions (i.e., αs)
are unsatisfiable. To this end, during policy consistency checking,
we also check to see whether all αs are satisfiable. If all of them are
unsatisfiable, we conclude that the policy is vacuous and we notify
the user.
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⟨Policy_Analysis⟩ ::= ⟨Analysis_Commands⟩+

⟨Analysis_Commands⟩ ::= ‘Check’ ‘consistency’(⟨Policy_Formula⟩|⟨empty⟩)
| ‘Check’ ‘entailment’ ⟨Policy_Formula⟩‘=>’⟨Policy_Formula⟩
| ‘Check’ ‘equivalence’ ⟨Policy_Formula⟩‘==’⟨Policy_Formula⟩

⟨Policy_Formula⟩ ::= ⟨Policy_Identifier⟩ | ⟨Invariant_Identifier⟩
| ‘(’⟨Policy_Formula⟩’)’ | ‘not’ ⟨Policy_Formula⟩
| ⟨Policy_Formula⟩ ‘and’ ⟨Policy_Formula⟩
| ⟨Policy_Formula⟩ ‘or’ ⟨Policy_Formula⟩

Figure 5: Concrete Syntax of Pal
check consistency

check consistency P1 and not P2

check equivalence I1 == I2

check entailment I1 => P2

Figure 6: An example Pal script.

4.4.2 Entailment. The equivalence analysis takes two arguments
of policy formula type. It then checks to see whether the first policy
induced by the first policy formulae is less-or- equally permissive
than the second policy, that is, there is no action a such that the
first policy accepts it whereas the second one rejects it.

Suppose arguments to entailment analysis are the policy formu-
lae f1 and f2 which after Pal compiler processes yield the QF-FOL
formulae Ψ1 and Ψ2, respectively. It checks to see whether for all
concrete s1, s2 ∈ S, and a ∈ A such that s1

a
−→ s2 the following

holds: (s2 |= Ψ1) ⇒ (s2 |= Ψ2). For checking this, we consult the
SMT solver and check whether the formula ¬(Ψ1 ⇒ Ψ2) is satisfi-
able. If the SMT solver concludes the formula to be unsatisfiable,
then we notify the user that the first policy entails the second. Oth-
erwise, we notify the user about the failure and provide the model
returned by the SMT solver as the counterexample.

4.4.3 Equivalence. The equivalence analysis takes two arguments
of policy formula type. It then checks to see whether policies in-
duced by those policy formulae are equivalent, that is, for all possi-
ble actions a both policies return the same decision. Such analysis
is particularly relevant when the user refactors a current policy to
obtain a new policy and wants to check whether both policies are
functionally equivalent.

Suppose arguments to equivalence analysis are the policy formu-
lae f1 and f2 which after Pal compiler processes yield the QF-FOL
formulae Ψ1 and Ψ2, respectively. It checks to see whether for all
concrete s1, s2 ∈ S, and a ∈ A such that s1

a
−→ s2, the following is

true: (s2 |= Ψ1) ⇔ (s2 |= Ψ2) where⇔ denotes logical equivalence.
For checking this, we consult the SMT solver and check whether the
formula ¬(Ψ1 ⇔ Ψ2) is satisfiable. If the SMT solver concludes the
formula to be unsatisfiable, then we notify the user that the policies
are equivalent. Otherwise, we notify the user that the policies are
not equivalent and provide the model returned by the SMT solver
as the counterexample.

4.5 Policy deployment

In this section, we will describe how Expat ensures that installed
apps in a smart-home platform do not violate user expectations
specified in the Uei language.

Towards this goal, Expat provides a runtime monitoring mecha-
nismwhich takes as input anUei policyP and then decides whether
each requested action by apps in a smart-home system (e.g. unlock-
ing the door) is aligned with P. If the action a is aligned with P,

then a is permitted to be taken; otherwise, it is simply withdrawn
without any interruption to the system operation. To check whether
an action a complies with a policy P, the runtime monitor relies
on a policy decision function δ which we define below.
Policy decision function: The heart of Expat’s runtime moni-
toring mechanism is the policy decision function δ which takes a
Uei policy P, a contemplated action a by an app, and the current
system state sc , and decides whether a is compliant with P, that
is, δ : P×A×S → {permit, deny} where P is the set of all possi-
ble policies specified in Uei. Given sc

a
→ sn , the decision function

δ just checks to see whether sn |=? ⟦P⟧P. If sn |= ⟦P⟧P, then δ
returns permit; otherwise, it returns deny. Recall that, ⟦P⟧P is
a QF-FOL formula. Thus, δ just needs to evaluate the formula
⟦P⟧P with respect to sn .
As the readers may have realized, the deployment of Expat’s

runtime monitoring mechanism relies entirely on the target smart-
home platform. With that in mind, we need to investigate feasible
deployment alternatives based on the existing platforms’ architec-
tural designs. For effectively deploying Expat’s runtime monitoring
mechanism in a smart-home platform, one has to answer the fol-
lowing two questions:
(1) How should one intercept each app’s contemplated action?
(2) Where should the policy decision function be deployed so that

it has a global and consistent view of the system state?
Appified smart-home platforms come generally in two flavors, ei-

ther shipped with a proprietary hub backed by cloud-based services
(e.g. Samsung SmartThings) or shipped with open-source imple-
mentations (e.g. OpenHAB). Although one can gain a full control of
an open-source platform and flexibly deploy Expat wherever it fits
best, both categories of systems provide users with a programming
interface to build the automation apps, serving as an entry point to
the platforms. To keep our approach as general as possible so that
it can be applied to a wide variety of smart-home platforms, we
leverage a platform’s programming interface for deploying Expat.

4.5.1 Intercepting actions of each app. The programming interface
provided by a platform enables users to write automation apps
through aweb-based IDE or just a text editor and then stores/installs
them on the platform to mechanize automation processes amongst
the smart devices. Recall that the automation apps are written
based on the trigger/action paradigm. That is, an app requires to
specify which triggers of interest it needs to be subscribed for and
determine which actions should be taken after occurring those
triggers. In order to authorize those requested actions, we need to
place our reference monitor in appropriate location to first monitor
the request context (e.g., action, target device) and then check it
against user’s expectations using the decision function δ . Given that
the programming interface (i.e., app source code) is our entry point
to the platforms, the only location we can monitor an action request
is where it is being called in the app. This can be done through
guarding each action request by an inline reference monitoring.

Having contemplated the set of all possible actions in the target
platform, Expat can spot the appropriate places in the app source
code to instrument with inline reference monitoring. This inline
reference monitoring is achieved by putting the requested actions
into an if statement block whose condition is a call to the decision
function by passing the request context as its arguments. Hence,
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the result of the decision function determines as to whether the
requested action should be taken or not.

4.5.2 Deploying policy decision function. Since the appified smart-
home platforms generally deliver decent programming capabilities
for the app developments, there are two alternatives for deploy-
ing/implementing the decision function: (1) off-site, in which all
its functionalities are implemented in an external server and then
being used by an app inside the platform for each requested action
[8]; (2) in situ, in which the decision function is implemented locally
within the platform to be used in inline reference monitoring. We
choose the in situ deployment of δ because along with its benefit to
privacy, this approach does not require going out of the platform to
make a decision and hence reducing the policy checking overhead.

There are, however, the following two main challenges for in
situ deployment of the decision function in smart home platform.
• The decision function needs to have a centralized view of the
entire system to be able to make an informed decision according
to user expectations, while each app in the appified platforms are
designed to have partial isolated view from the rest of system.
• Each call to the decision function by inline reference monitoring
must be synchronized to avoid any possible inconsistency caused
by the concurrency which is very common in these platforms.
Addressing the first challenge requires direct support from the

platform. One needs a built-in mechanism that enables the decision
function, written in the target platform language, to have access to
the system state and thus achieving a centralized view of the entire
system. In Section 5, one candidate solution has been proposed for
OpenHAB. There are other mechanisms providing this capability
in other platforms as well.

The second challenge arises due to the high degree of concur-
rency and the asynchronous nature of app execution. If two apps
have the same trigger condition and the condition is satisfied, those
get executed concurrently. However, this concurrency can lead to a
inconsistent situation as follows: suppose Expat checks the policy
invariants and allows an action a based on the current system state
where a device is in state s , but right before executing a the device’s
state changes to s ′ (from outside of this function), and operating a
in s ′ will lead to an undesired state. This is a well-known race con-
dition example in software security, called the time of check to time
of use bug (TOCTOU). To prevent this issue, we use a global mutex
(i.e. lock) to make any call to the decision function, leading to any
state change in the system, synchronous. Although using a mutex
resolves the issue, some performance overhead will be incurred
which we, however, argue is negligible (see Section 6). To make it
explicit, using locks leads to sequential execution of rules. Unlike
cyber-physical systems (e.g., power-plants) where deadlines are
crucial, in smart-home platforms, we believe the incurred overhead
is tolerable. This sequential execution also does not limit Expat
usage since platforms execute each triggered rule in a separate
thread but their side- effects are sequential (i.e. action commands
are sequentialized at hub). So, true concurrency is not possible.

Having considered all these aspects in the design of inline refer-
ence monitoring and the decision function, Expat parses the source
code of the automation apps in the platform and automatically

1 rule "R1"

2 when

3 Item InteriorMotionSensor received command ON

4 then

5 FrontDoorLock.sendCommand(OFF)

6 end

7
8 rule "R2"

9 when

10 Item LivingroomTemperature received update

11 then

12 if (LivingroomTemperature >= 80){

13 LivingRoomWindowRemoteControl.sendCommand(OFF)

14 }

15 end

Figure 7: Rule DSL example in OpenHAB

instruments all the actions inside them with in line reference moni-
toring which in turn calls the deployed decision function to enforce
the policies inside the platform itself at the runtime.

5 IMPLEMENTATION

Aprototype of Expat has been implemented to concertize its concep-
tual design as well as demonstrating the feasibility of our proposed
approach. The Expat prototype is implemented for OpenHAB smart-
home platform [29] which is an open-source, technology-agnostic
system used for automating processes between smart devices. The
automation units in OpenHAB are called rules and a user can write
them in a DSL (Domain Specific Language). Figure 7 shows an
example with two rules, R1 and R2, written in OpenHAB DSL.

Following the trigger/action paradigm, each rule has a trigger
section in when block, and a script section in then block where
action(s) can be performed. R1 unlocks the front door when the
interior motion detector detects a motion whereas R2 opens the
living room window when the temperature is higher than 80°F.
Having understood the OpenHAB DSL basics, we now describe the
implementation details of Expat using a simple scenario.

Uei. In our Expat implementation, we use the concrete portion
of Uei’s syntax described in Figure 2. Given the installed rules
(Figure 7), in our scenario, the user wants to ensure that the front
door will not get unlocked for any reason whenever they are away
from home. This expectation can be violated if something/someone
(e.g., a pet) trips the motion sensor. Hence the user specifies the
Uei policy shown in Figure 8 ΨfrontDoorLock that states “if the front
door gets unlocked, then it must be the case that I am home.”

Policy analysis. For policy analysis, Expat hinges on the z3
SMT-Solver [36]. Expat first parses the Uei policy and based on the
analysis task converts it to an SMT problem. Expat uses ANTLR [3]
for generating the Uei parser whereas uses z3py [41] (z3’s Python
binding) to communicate with the solver programmatically. In our
SMT encoding of Uei and the associated policy analysis task, we use
linear integer arithmetic (LIA) theory to encode date/time related
constructs of Uei, and scalars sort (i.e., enumeration types) to define
the domain of smart devices (i.e., “items" in OpenHAB terminol-
ogy) and the domain of possible states (e.g., commands). Figure 9
illustrates the SMT-LIB [5] encoding of ΨfrontDoorLock along with
the rest of the consistency checking done by Expat.

Policy deployment. Policy deployment takes a Uei policy policy
invariants in Uei language and the installed rules source code as
inputs and replaces the installed rules file with the instrumented
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Policy P1:

Invariant I3:

Situation: state(FrontDoorLock) = OFF

Desire: Expect

Expectation: state(HomeMode) = ON

Figure 8: A policy dubbed ΨfrontDoorLock for ensuring that the
front door remains locked when the user is away.

Encoding of input policy in SMT-LIB format for consistency analysis:

----------------------------------------------------------------------

(declare-datatypes ((Command 0)) ((Command (ON) (OFF) (OPEN) (CLOSED)

(UP) (DOWN) (STOP) (MOVE))))

(declare-fun Presence_state () Command)

(declare-fun FrontDoorLock_state () Command)

(declare-fun I3 () Bool)

(declare-fun P1 () Bool)

(assert (= I3 (=> (= FrontDoorLock_state OFF) (= Presence_state ON))))

(assert (= P1 I3))

Result:

----------------------------------------------------------------------

Invariants are consistent!

Model:

----------------------------------------------------------------------

I3: True

FrontDoorLock_state: ON

Presence_state: OFF

P1: True

Figure 9: Expat’s analysis output of the policy ΨfrontDoorLock.

one in OpenHAB. The policy deployment begins with a consis-
tency check on the input Uei policy to ensure policy consistency.
It then parses both the policy and rules where the policy is used
to synthesize the policy decision function δ in OpenHAB DSL
whereas the rules are instrumented to guard each action with a call
to the decision function. OpenHAB has several categories of actions
[30] with which an app can send a command to a device, perform
audio/voice-related actions, transfer an information via HTTP, etc.
Expat uses this as reference to spot any action in the rules file. For
instance, sendCommand and postUpdate are two methods used
for sending a command to an item and updating an item’s status,
respectively. Figure 10 shows the instrumented rules DSL given the
policy ΨfrontDoorLock, and rules R1 and R2.

In the instrumented DSL, each action is guarded by an if state-
ment which in turn calls the decision function, policy_check,
with the appropriate request context as arguments. Notice that,
each policy_check call is synchronized by mutex provided by
OpenHAB. The policy_check function is also defined in the same
rules file to orchestrate the permission to take each action requested
by those rules. The function contains the encoding of the policy
invariant, I3, in line 6 and its result is passed to the permission
variable in line 7 as the final decision. However, if we had multiple
policy invariants, the permission would become the conjunction
of them all. This function also declares a variable for the state of
each device used in the policy (lines 4 and 5) and it is assigned
with either the current state of the device or the requested action
command parameter, if this state variable pertains to the device
on which an action is requested. This is done as policy_check
wants to test whether the requested state change of the device (after
performing the requested action) complies with the policy. Once
the instrumented rules’ file has been generated by Expat, it updates
the old rules’ file and thus OpenHAB picks up the instrumented
rules’ file and OpenHAB enforces the policy in situ at runtime.

1 ... //necessary package imports

2 val ReentrantLock lock=new ReentrantLock()//global mutex
3 val policy_check = [String my_rule_name, GenericItem

my_triggered_event_device, State my_triggered_event,

String my_trigger_type, GenericItem my_action_device,

State my_action_command |

4 val FrontDoorLock_state = if (FrontDoorLock ==

my_action_device) my_action_command else

FrontDoorLock.state

5 val Presence_state = if (Presence == my_action_device)

my_action_command else Presence.state

6 val I3 = ! ( FrontDoorLock_state == OFF ) || (

Presence_state == ON )

7 val permission = I3

8 ... // log the request and policy decision

9 return permission] //end of policy decision function

10 rule "R1" //start of instrumented rule 1
11 when Item InteriorMotionSensor received command ON //

Trigger

12 then val rule_name = 'r1'

13 val triggered_event_device = InteriorMotionSensor

14 val trigger_type = 'command'

15 val triggered_event = NULL

16 lock.lock() //acquiring lock

17 try {

18 //Inline call to the reference monitor

19 if (policy_check.apply(rule_name,

triggered_event_device, triggered_event,

trigger_type, FrontDoorLock, OFF)) {

20 FrontDoorLock.sendCommand(OFF)

21 }

22 } finally{lock.unlock()}//releasing lock

23 end //end of instrumented rule 1
24 rule "R2" //start of instrumented rule 2
25 when Item LivingroomTemperature received update //Trigger

26 then val rule_name = 'r2'

27 val triggered_event_device = LivingroomTemperature

28 val trigger_type = 'update'

29 val triggered_event = NULL

30 if (LivingroomTemperature >= 80) {

31 lock.lock() //acquiring lock

32 try {

33 //Inline call to the reference monitor

34 if (policy_check.apply(rule_name,

triggered_event_device, triggered_event,

trigger_type, LivingRoomWindowRemoteControl,

OFF)) {

35 LivingRoomWindowRemoteControl.sendCommand(OFF)

36 }

37 } finally{lock.unlock()} //releasing lock

38 }

39 end //end of instrumented rule 2

Figure 10: OpenHAB rule DSL after Expat instrumentation.

6 EVALUATION

We evaluate Expat by applying it in a smart-home equipped with a
multitude of apps/rules and and policies. Specifically, we seek to
answer the following research questions: (a) Is Expat effective in
ensuring user expectations? (b) How much overhead does Expat
incur for enforcing Uei policies at runtime? The configuration of
our setup and the datasets are publicly available [12].

6.1 Setup

Testbed information. For our experiment, we created our own
testbed, where we deployed OpenHAB 2.4 [29] on a Raspberry Pi 3
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1. Front Door Lock
2. Garage Door Lock
3. Car
4. Indoor Motion Sensor
5. Living Room Window
6. TV
7. Smoke Detector
8. Surveillance Camera
9. Bedroom Window
10. Water Valve
11. AC
12. Living Room Light
13. Fire Sprinkler
14. Bed Room Light
15. Leak Detector
16. Illuminance Sensor
17. Ceiling Fan
18. Temperature Sensor

14

15

16

17
18

Figure 11: The virtual smart-home used as our testbed

Model B+. As the rules, policies, and Expat all run in the backend
(i.e., OpenHAB), we do not necessarily need actual physical smart
devices to evaluate Expat. Thus, we leveraged the OpenHAB’s web
portal and created a virtual smart-home consisting of 1 bedroom,
1 living room, 1 garage, and other safety and security devices as
shown in Figure 11. To create the necessary triggering events (e.g.,
smoke Detected, TV is On), we used the web portal to directly
interact with the devices. In reality, there are some indirect cause
and effect relationships between devices. For instance, turning on
the fire sprinkler starts flowing water, which the water leak detector
senses and considers as a water leak. To enable such indirect acti-
vations in the virtual testbed, we manually simulated these triggers
using the web portal as required during our experiments.
Datasets. To evaluate Expat, we crafted our own datasets instead
of obtaining third-party rules from the marketplaces. The rationale
behind this choice is two-fold. (i) While a large of rules exists in the
wild, there is no existing oracle to establish the ground-truth and
understand the semantic/intention of a rule without tedious manual
effort. (ii) Unlike pre-deployment analysis approaches, Expat aims
to enable runtime protection, and hence third-party rules from the
marketplaces may not include the nuanced context to demonstrate
Expat’s efficacy. Therefore, we resorted to well studied problem-
atic rules available in the literature [7, 8, 10, 13]. All these rules
were created for the SmartThings platform [34]: some were from
the official GitHub repository and some were entirely synthetic.
Since the rule language for OpenHAB is different from the one for
SmartThings, we ported all these rules for OpenHAB.
• Rules. We installed 15 rules in our smart-home, which are de-
scribed in Table 1 using simple words. For instance, whenever
the smoke detector detects smoke and the temperature increases
above 135°F, rule R1 will turn on the fire sprinkler to contain the
fire. Similarly, whenever the water leak sensor detects water, it
triggers R2 which turns off the water valve to prevent financial
loss due to damaged property and water bills. Rules can be mali-
cious as well. For example, R9 is a malicious rule which embeds a
sneaky command “[unlock front door]” such that whenever the
user sets sleep mode on, the rule turns off the light and sends a
stealthy command to unlock the front door.
• Policies. For our experiment, we used 8 policies written in Uei.
Table 2 shows a simplified description of each policy. For ex-
ample, policy PI1 states that whenever the water leak detector
wants to shutdown the water valve, the user does not expect that
the smoke detector to sense any smoke. Similarly, PI5 inversely
states that the front door must not be unlocked by a rule in any

Table 1: Rules used in our setup

ID Rule Description

R1 smoke detected and temperature > 135°F
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−↠ turn on fire sprinkler

R2 water leak detected
−−−−−−−−−−−−−−−−↠ turn off water valve

R3 every Sunday at 8 PM
−−−−−−−−−−−−−−−−−−↠ turn on TV

R4 TV turns on
−−−−−−−−−−−↠ open living room window

R5 every working day at 6 AM
−−−−−−−−−−−−−−−−−−−−−−−↠ open bed room window

R6 every working day at 8 AM
−−−−−−−−−−−−−−−−−−−−−−−↠close bed room window

R7 every day at sunset
−−−−−−−−−−−−−−−−−↠ turn on light

R8 temperature > 80°F
−−−−−−−−−−−−−−−−↠ turn on ceiling fan

R9 sleep mode on
−−−−−−−−−−−−−↠ turn off light [unlock front door]

R10 temperature > 75°F
−−−−−−−−−−−−−−−−↠ turn on AC

R11 temperature < 65°F
−−−−−−−−−−−−−−−−↠ turn on heater

R12 sleep mode on
−−−−−−−−−−−−−↠ turn off all appliances

R13 indoor motion sensor detected
−−−−−−−−−−−−−−−−−−−−−−−−−↠ unlock front door

R14 car distance from home < 150 YDS
−−−−−−−−−−−−−−−−−−−−−−−−−−−↠ unlock garage door

R15 garage door lock opened
−−−−−−−−−−−−−−−−−−−−↠ unlock front door

Table 2: Policy invariants used in our setup

ID Policy Invariant Description

PI1 Water leak detector can shutdown water valve only if the smoke detec-
tor is not sensing smoke.

PI2 Any lights/windows can be turned on/opened only if the system is not
on sleep mode.

PI3 In any situation, surveillance camera must remain on.

PI4 Bedroom window/light can be opened/switched on only if the vacation
mode is turned off.

PI5 In any situation, front door must remain locked.
PI6 AC can be switched on only if the heating is off.
PI7 Lights/windows can be switched on/opened only if I am at home.
PI8 Living room window can be opened only if both heater and AC are off.

Table 3: Experiment scenarios and outcomes demonstrating

Expat’s effectiveness in blocking undesirable actions

Category
Group

ID

Rules

Involved

Policy

Enforced
Denied Action

Implicit
interplay

G1 (R1, R2) PI1 water valve won’t shut
down

G2 (R10, R11) PI6 either AC or heater will
turn on

Explicit
interplay G3 (R3, R4) PI7 window won’t open

Sneaky com-
mand G4 R9 PI5 front door won’t be

unlocked

Benign but
contextually
undesired

G5 R12 PI3 surveillance camera will
not turn off

G6 R5 PI4 window will not be open
G7 R8 PI7 fan will not turn on
G8 R7 PI2 light will not turn on

condition. To demonstrate Expat’s flexibility, we used different
types of policies: conservative (e.g., PI5) and contextual (e.g., PI7).

6.2 Experimental Results

Effectiveness of Expat. To evaluate Expat’s effectiveness, we
adopted a careful guided approach instead of sampling a rule at
random and activating its triggering events. Since Expat aims to
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ensure user expectations at runtime, we created 8 hand-crafted
scenarios (see Table 3) to capture some unexpected situations by
triggering one or more rules from Table 1. For each scenario, we
wanted to check if Expat was able to enforce the policies in Table 2
and block any undesirable action according to the policies. Like our
rules, some of the scenarios are based on the literature [7, 8, 10, 13].

Category-1: Blocking undesired implicit interplay. Scenarios G1
and G2 involve rules that interplay with each other implicitly (see
Table 3). For instance, in case of G1, we first triggered R1 which
turned on the fire sprinkler; then after sometime the water leak
detector (virtually) sensed a water leak and triggered R2 which
attempted to turn off the water valve. However, Expat denied R2’s
action as it violates PI1. Without Expat, R2’s action would have
shutdown the water valve causing severe damage due to the fire.

Category-2: Blocking undesired explicit interplay. The scenario
G3 demonstrates how two rules (R3, R4) can explicitly interplay
and lead to an unexpected situation. For G3, we first set the user
was away and then virtually triggered R3 which turned on the TV.
Once the TV was on, R4 was also triggered, but it failed to open the
living room window, because Expat blocked R4’s action due to PI7.

Category-3: Blocking sneaky commands.The scenarioG4 demon-
strates how Expat can block malicious rules containing sneaky
commands. For G4, we first set the sleep mode on, which triggered
R9 and as a result, the rule turned off the bedroom light. So far the
execution went smoothly. However, being a malicious rule, R9 had
a sneaky command to unlock the front door, which Expat denied
since it violated PI5.

Category-4: Blocking contextually undesired benign commands.
We demonstrated four scenarios (G5–G8) where the actions were
benign but undesired in the specific context. For instance, in case
of G6, we first enabled the vacation mode and virtually triggered
R5, which was supposed to open the bedroom window but failed.
Expat denied R5’s action as it violated PI4.
Performance Overhead. To measure Expat run-time overhead,
we ran each rule without and with the policies enabled, measured
the difference in the elapsed time. In the former experiment, we
ran each rule as it was written in the OpenHAB DSL, whereas in
the latter experiment we used the instrumented version of each
rule. In both experiments, we collected 10 data points for each rule.
We observed that Expat incurs an average overhead of 63.11 ms
(milliseconds) with standard deviation 5.91 for checking policies
for each app which we argue is modest in our context.

7 DISCUSSION

Usability of Uei. As Uei is intended to be a user-facing language,
its usability is of paramount importance. We do not have quantita-
tive measurements backing the effectiveness of Uei. As the current
paper focuses particularly on laying down the formal foundation
of policy enforcement in appified smart-home platforms, we leave
the evaluation of Uei through a user study as a future work.
Integration with IFTTT. IFTTT is a web-service that provides
platform-agnostic automation mechanism [21]. Although Open-
HAB can be integrated with IFTTT, the actions contemplated by an
IFTTT rule is not visible to the app execution engine where Expat
is deployed. To effectively regulate IFTTT, it is necessary to deploy
Expat enforcement mechanism in a lower-level with full visibility

of all actions. Such an approach, however, is not general enough to
be deployed in other platforms (e.g., Samsung SmartThings). In this
paper, we aimed for generality and hence the current deployment
mechanism of Expat cannot mediate IFTTT triggered actions.
Bootstrapping Expat. Expat’s enforcement mechanism at the
time of deployment requires the system to begin with a state where
none of the invariants is violated. If the system were to be in a state
where all invariants are violated, Expat would block all actions. To
mitigate this, one can design a bootstrapping rule to initialize the
system to be in a good state (e.g., all lights are off, doors are locked).

8 RELATEDWORK

While much work has gone into discovering or analyzing the vul-
nerabilities in smart IoT devices [19, 28, 32, 38] and in communica-
tion protocols [16, 25, 33, 40], an avenue of recent research [1, 6–
11, 13, 18, 23, 24, 27, 31, 37, 39] focuses on the security of appified
smart-home platforms, specifically, their backend and program-
ming interfaces. We can conceptually categorize the prior work
closely related to Expat based on their underlying mechanisms.
Static analysis. Prior efforts [6, 7, 10, 13] aim to develop static-
analysis based mechanisms for detecting apps that violate the user’s
expectations prior to installation in her smart-home. These apps
can violate expectations by commanding undesirable actions [13],
leaking information [6], interfering with existing apps [10], or not
satisfying high-level functional properties [7].While early detection
of vulnerable apps prior to installation can be effective during the
initial setup, these approaches are prone to imprecision because of
the incurred over- or under-approximation during static analysis.
In addition, these approaches often rely on an abstract environment
model to scale their analysis, and the lack of details in the model
can amplify the false positive rates. We, on the other hand, relies on
dynamic analysis to enable runtime checking of user expectations.
Dynamic analysis. Dynamic analysis based approaches [8, 23, 39]
do not suffer from the limitations of static analysis. For providing
runtime defense, some techniques (e.g., ContexIoT [23], ProvThings
[39]) rely on domain knowledge to enumerate vulnerable actions
while IoTGuard [8] hinges on policies that express the user’s expec-
tations. However, they fall short in mitigating the threats. IoTGuard
considers a mutli-app environment while ContexIoT analyzes each
app in isolation, but they both ship all necessary state/context in-
formation from SmartThings platform to an outside entity (dubbed
local server) using http(s) because their policy decision maker re-
sides outside the platform. To make their local web server (with
private IP) accessible to SmartThings, IoTGuard, for instance, needs
to trust a third-party service (i.e. ngrok [26]). We argue that such
outsourcing not only raises privacy issues but also incurs significant
overhead because each individual action (i.e. turning on a light) re-
quires communicating with the external server for policy decision.
Contrarily, Expat only leverages platform’s capability of executing
an app and its programming interface by an in situ deployment,
which does not mean deploying it in a “local server” (as discussed
in IoTGuard). ProvThings focuses on forensic analysis and hence
collects execution traces to draw causality inference, whereas Expat
enables runtime protection to ensure user expectations.
Others. Toward IoT security, some existing research takes a differ-
ent approach by proposing new system design [15], access control
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[18, 24], programming framework immune to information leakage
[14], risk-based analysis [11, 31], fuzzing smartphone apps con-
trolling IoT devices [9]. Unlike them, Expat takes an orthogonal
direction to enable runtime enforcement of user expectations.

9 CONCLUSION AND FUTUREWORK

To protect users of smart-home automation platforms from unde-
sired actions of automation apps, this paper presents Expat. Expat
is envisioned to be deployed in existing appified smart-home plat-
forms as an in situ runtime monitor. To capture the user expecta-
tions of apps’ behavior, Expat provides a specification language
dubbed Uei which has a formal syntax and semantics. For effective
policy authoring, Expat enables users to check desired properties of
Uei policies through the use of an SMT solver. Finally, we demon-
strated that Expat can be effortlessly instantiated for OpenHAB
through instrumentation of installed automation apps which guards
each contemplated action of apps with an inline call to the Expat’s
reference monitor. Our instantiation of Expat incurs only a modest
overhead (i.e., ∼63 ms) while maintaining the users’ expectations
as invariants.

Futurework. In future, to decrease runtime overhead, wewould
like to focus on a hybrid enforcement approach which given an Uei
policy will first perform some static analysis to check whether some
inline calls to the reference monitor in an app can be removed by
statically proving compliance. For the rest of the actions, we would
follow the same approach as in Expat of inline runtime monitoring.
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